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Introduction
The capillary viscometer is essentially a

device in which a volume V of liquid flows
through a capillary of length l and radius R in t
seconds under a pressure of p g./cm.2. Using
Poiseuille's equation, we may calculate the
viscosity η (in poises) by the relationship
η = πgpR4t/8Vl (1)

For a given viscometer, the product pt should be
constant if (1) is satisfied; actually, as is well
known, the product usually increases as the
driving pressure decreases. Three effects,
inherent in the design of the viscometer,
contribute to this variation: (1) all of the work
done by the driving pressure is not dissipated as
heat in overcoming viscous friction; (2) flow
near the ends of the capillary is not laminar; (3)
the volume of liquid which flows from the bulb
is not the volume of the dry bulb. Of these, the
first is usually the largest correction term for
ordinary liquids (η ≈ 10-2) in conventional
viscometers. If correction is made for these
instrument effects, and the pt product still varies
with driving pressure, then we may conclude that
the liquid is non-Newtonian, i.e., that η = η(p).
For the usual range of driving pressures (giving
average velocity gradients of the order of 103

seconds-1), 1/pt is linear in p over a much wider
range of variables than that corresponding to
linearity of pt in 1/t. We present in this paper an
empirical analysis of viscosity data, which
permits isolation of the shear-dependent term of
the viscosity.

Kinetic Energy and End Effect
Corrections.—The liquid leaving the viscometer
capillary is travelling with finite velocity;
therefore, only part of the work done by the
driving pressure overcomes viscous friction
within the capillary. The corresponding
correction has been accordingly called the

kinetic energy correction. Wilberforce1 made an
important correction to Hagenbach's2 first
estimate of this quantity and also made an
estimate of the end effects on Reynolds’3

analysis of the transition from laminar to
turbulent flow. Wilberforce's result may be
written
η = πgpR4t/8Vl - mp V/8πlt (2)
= αpt - β/t (2’)
If the constant m were unity, the second term on
the right then would be the kinetic energy
correction, calculated on the assumption that the
flow throughout the length of the capillary were
laminar; i.e., m = 1 corresponds to the case of
negligible end effects. Ample experimental
evidence shows that, while m is near unity, its
actual value is somewhat greater. In other words,
practical viscometers have end effects which
may riot be neglected. A precise calculation of m
(or its equivalent) would involve the integration
of the Navier-Stokes equation with almost
hopelessly complicated boundary conditions. It
seems preferable, therefore, to accept (2) as the
summary of much experimental evidence and to
proceed from this equation as our starting point.

We may consider Equation (2) as a
quadratic in (1/t) with the solution
1/t = (η/2β)[(1 + 4αβp/η2)1/2 - 1] (3)

The variable in the radical is to a close
approximation mpV/2πlηt, which is about 6/t for
m ≈ 1, p ≈ 1, V = 4, l = 10, η ≈ 0.01. For ordinary
work, therefore, we may expand the radical and
drop cubic and higher terms; to this
approximation
1/t = αp/η - α2βp2/η3 (3')
                                                       
1 L. R. Wilberforce, Phil, Mag., 31, 407 (1891);
cf. also G. Barr "Monograph on Viscometry,"
Oxford University Press, London, 1931, p. 16.
2 E. Hagenbach, Pogg. Ann., 109, 385 (1860).
3 0. Reynolds, Phil. Trans., 174, 935 (1883).
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which immediately leads to the alternative form
of (2)
1/pt = (πgR4/8Vlη) - (πg2R8mρp/83Vl3η3)(4)
= I - Sp = A/η - A’ρp/η3 (4')
Equation (4) states that a Newtonian liquid in a
viscometer which needs correction for kinetic
energy and end effects will give pt reciprocals
linear in the driving pressure; i.e., apparent
fluidity is linear in p, and the true value of 1/η is
obtained by extrapolating (1/pt) to zero pressure
and dividing by the instrument constant A. This
in turn is evaluated by calibration with liquids of
known viscosity. Water is usually taken as the
standard, with η = 0.008929 at 25.00°.

Drainage Correction.—Equation (4) was
derived on the tacit assumption that V was equal
to V0, the volume of the dry bulb. This value is
correct, if we run into a dry bulb, as
recommended by Swindells4; if a filled bulb is
being drained, however, allowance must be made
for the liquid which remains in the bulb, wetting
the walls.5 We expect the volume of this liquid to
be given by
∆V = aη/ρt (5)

where a is an empirical constant depending on
the geometry of the viscometer bulb. (It may also
depend on surface tension of the liquid, but we
have insufficient evidence at present to decide
this point.) Correcting (1) for ∆V, we see that the
coefficient A of (4') becomes
A = k/V = k/(V0 - ∆V) (6)

                                                       
4 J. F. Swindells, J. Colloid Sci., 2, 183 (1947).
5 G. Jones and R. E. Stauffer, THIS JOURNAL,
59, 1630 (1937); R. M. Fuoss and G. I. Cathers,
J. Polymer Sci., 4, 97 (1949).

where V is the volume of liquid which actually
passes through the capillary in t sec. Substituting
(6) in (4') and dropping higher terms, we obtain
1/pt = A/η - (A’ρ/η3 – aA2/ρV0η)p (7)
= A/η - Λp (7')
where A now means, πgR4/8V0l.

Comparison with Experiment.—It will be
seen that the slope of the (1/pt)—p plot is made
up of two terms of opposite sign, each of which
depends explicitly on the viscosity of the test
liquid. For liquids of increasing viscosity,
therefore, we would expect a reversal of the sign
of the slope at high viscosities, when the
drainage correction exceeds the Wilberforce
correction. This has been observed
experimentally, for a series of sucrose-water and
nitrobenzene-methanol mixtures, by W. N.
Maclay of Yale University, who has kindly made
his data available to us. The most direct test of
Equation (7) is obtained as follows: we multiply
the coefficient Λ by ηρ and obtain
—Ληρ = aA2V0 – A’(ρ/η)2 (8)

In Fig. 1, we show a plot of Maclay's slopes
(multiplied by ηρ) as a function of (ρ/η)2. It will
be seen that the points average to a straight line
as required by Equation (8). From the intercept at
(ρ/η)2 = 0, we obtain the drainage correction,
and from the slope, the Wilberforce coefficient
may be evaluated.

It will be noted that a knowledge of the
viscosity was necessary in order to carry out the
test shown in Fig. 1. Having used these data to
determine the (small) drainage correction, we
may now test Equation (4) in a completely
empirical fashion. In the form (4'), Equation (4)
states that the (1/pt)—p plot is linear with
intercept I at p = 0 and with slope S (assuming
no drainage). We may use the result of the
extrapolation in Fig. 1 to correct the observed
slopes to give values of S
S = Λ + aA2V0/ηρ (9)

The viscosity is readily eliminated between I and
S giving

I = A(S/A'p)1/3 (10)
A plot of log I against log S/ρ is shown in Fig. 2
for a variety of systems; the straight line was
drawn with a slope of one-third. It will be seen
that the points conform closely to the result
expected from Equation (10).

Using the Wilberforce values of I and S, as
given in Equation (4) to eliminate R, we obtain
the equation

ρ/η = (8πl/mV0)(S/I2) (11)
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In Fig. 3, ρ/η is plotted against S/I2. The points
may be averaged by a straight line through the
origin, from which we obtain m = 1.15 for l =
11.0 cm. and V0 = 4.02 cc. It should perhaps be
mentioned that the scattering of the points in

Structural Viscosity.—Solutions of
polymers, especially at higher concentrations or
at high molecular weights, or when the polymer
carries an electrostatic charge, usually show a
dependence of apparent viscosity on the rate of
shear.67 Extrapolation to zero rate of shear on the
Bingham plot is generally impossible, because
the pt-(1/t) plots are frequently curved. However
                                                       
6 H. Mark, J.  Appl. Phys., 12, 41 (194 1).
7 R. M. Fuoss and U. P. Strauss, Ann. N. Y.
Acad. Sci., 51, 836 (1949).

(1/pt)—p curves for several systems investigated
are linear. We are indebted to R. A. Mock of the
Sterling Chemistry Laboratory of Yale
University for the data of Fig. 4, which gives the
(1/pt)—p plots for a series of solutions of
polyvinylpyridine in methanol. The polymer has
a molecular weight of the order of 106. Its
intrinsic viscosity [η] equals 4.5. As will be seen,
the data fall on straight lines for all the systems
and we may extrapolate to p = 0, thus obtaining
viscosity values characteristic of the polymer and
independent of the viscometer.

Still more important, we may now use Eq.
(7) to obtain some information regarding the
dependence of viscosity of polymers on rate of
shear. Suppose we assume that Eq. (7) gives the
dependence of apparent viscosity on pressure as
far as drainage, end effect and kinetic energy
corrections are concerned. Then any remaining
dependence must be due to change of polymer
viscosity increment with rate of shear. A test of
this hypothesis is shown in Fig. 5. The dotted
line is the ideal dependence of Ληρ on (ρ/η)2

obtained by our calibration liquids. The circles
show the dependence of the observed Sηρ
products for the polymer solutions of Fig, 4,
where S is the slope from this figure. The
difference between observed and ideal slopes
will, by hypothesis, depend on change with
pressure of the contribution of the solute to
viscosity.

We now proceed to an analysis of this
proposal. Let z be the reduced viscosity

(η - η0)/η0 = (ηr - 1) = ηsp = zc (12)
where η is solution viscosity at pressure p and
concentration c, η0 is solvent viscosity, ηr is
relative viscosity and ηsp is specific viscosity.
Let z∞ represent the reduced viscosity at
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concentration c at zero rate of shear (zero
pressure or infinite time). To avoid double
subscripts, let j be the limit approached by the
relative viscosity at zero rate of shear

j = lim (ηr)P = 0 = η∞/η0 (13)
so that j - 1 = z∞c. Let η∞ be the solution
viscosity at the same limit. Now the contribution
of the polymer to solution viscosity will be
expected to change with changing velocity

gradient, which is, in turn, proportional to
driving pressure. High rates of shear could both
elongate the polymer coil and orient the ellipsoid
hydrodynamically equivalent to the coil, which
would tend to decrease viscosity; we, therefore,
make the assumption that in first approximation

z = z(p) = z∞ (l - kp) (14)
where k is an arbitrary constant. From (12)

η = η0 (1 + zc)
Substituting (14) into the above expression, and
using the abbreviations defined in the preceding
paragraph, we find

η = η∞ (1 - [j – 1] kp/j) (15)
Approximating (1 - x)-1 as (1 + x) in the equation
for reciprocal viscosity, we obtain

1/pt = A0/η - Λp
= A0/η∞ - Λp + (A0qk/η0)p (16)

where
q = (j - 1)/j2 (17)

Eq. (16) is of the form
1/pt = A0/η∞ + (k - Λ)p (18)

where
K = A0qk/η0. (19)

In other words, a polymer solution which is
non-Newtonian will give in first approximation a
linear (1/pt)—p plot with a slope dependent on
concentration and molecular weight. The test of
our assumption is to see whether the dependence
of the slopes of Fig. 4 on concentration is given
by Eq. (19); q = q(C) by definition. The

experimental values of K are obtained by
correcting the observed slopes S for drainage,
end effects and kinetic energy according to Eq.
(7). These corrections are read off the dotted line
of Fig. 5. We then plot the values of K against
Aq/η0 where experimental extrapolated values of
j (cf. Eq. (13)) were used to compute q by means
of Eq. (17). The points of Fig. 6 lie on a straight
line through the origin and from the slope we
find for the shear coefficient k = 1.67 X 10-3. For
a polystyrene with molecular weight 670,000
and intrinsic viscosity 2.27 in toluene, k = 0.36 X
10-3. For the latter material, measurement of
viscosity in an Ostwald viscometer, where the
average driving pressure is about 10 g./sq. cm.,
would give an apparent viscosity which was
0.36% too low (if shear dependence of solute
viscosity were the only cause of apparent
variation of viscosity with pressure).

We may now reverse the procedure, having
a numerical value for k, and compute theoretical
Sρη values for the systems of Fig. 4. The solid
curve of Fig. 5 is computed on the basis of a
single arbitrary constant k. The curve reproduces
the observed values well within the experimental
error of determining slopes from point-wise data.

As implied above, the slopes depend both
on concentration and on molecular weight,
because

z∞ = [η] + k’[η]2c, (20)
and

[η] = KMα (21)
By extrapolating (l/pt)—p plots to zero pressure,
we obtain reduced viscosities which are
characteristic of the polymer molecule at rest. It
should be emphasized that these are the values
which should be extrapolated to zero
concentration in order to obtain a true intrinsic
viscosity which will be independent of the
conditions of the viscosity measurements.

The shear constant k of Eq. (14) is, of
course, an apparatus constant, because a given
pressure produces a smaller velocity gradient in a
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smaller capillary for given V, l and η, since the
flow time is increased (Table I of Ref. 9). If we
combine Kroepelin's formula8 for the average
velocity gradient β in a capillary

β = 8V/3πR3 (22)
with Eq. (1), we have, to an approximation
accurate enough for a correction term

p = 3lηβ/gr (23)
and Eq. (14) becomes
z = z∞ (1 - 3 klηβ/gr) = z∞ (1 - sβ)           (24)
where the shear constant s, defined as change of
reduced viscosity with velocity gradient, is seen
to be

s = (3lη/gr)k (25)

Summary
1. The Wilberforce equation, which

includes kinetic energy and end effect
corrections for capillary viscometers, can be
rearranged to an equation in which apparent
fluidity is linear in driving pressure. An
additional term, also linear in pressure, is
produced by drainage errors. A method is
described for the experimental evaluation of
these corrections.

2. Polystyrene and polyvinylpyridine
solutions exhibit a fluidity which varies linearly
with pressure, after the above corrections have
been made. This residual variation is ascribed to
a distortion and/or orientation of the polymer
molecule. Analysis of the data permits
description of the shear dependence in terms of a
single arbitrary constant k, the shear constant. At
a pressure p, the intrinsic viscosity of a polymer
is

[η] ∞ (1 - kp)
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i Presented at the Schenectady Meeting of the
National Academy of Sciences, October 1950.
ii Yale University, New Haven, Conn.

                                                       
8 H. Kroepelin, Kolloid Z. 47, 294 (1929).


